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A method to locate periodic structures in general three-dimensional Stokes flows
with time-periodic boundary conditions is presented and applied to mixing cavity
flows. Numerically obtained velocity fields and particle tracking schemes are used to
provide displacement and stretching fields. From these the location and identification
of periodic points can be derived. The presence or absence of these periodic points
allows a judgement on the quality of the mixing process. The technique is general
and efficient, and applicable to mixing flows for which no analytical velocity field is
available (the case for all three-dimensional flows considered in this paper). Results
are presented for three different mixing protocols in a three-dimensional time-periodic
cavity flow, serving as an accessible test case for the methods developed. A major
result is that periodic lines are obtained for these three-dimensional flows. These lines
can be complex in geometry and their nature can change along a line from hyperbolic
to elliptic. They can serve as practical criteria in the optimization of three-dimensional
mixing processes.

1. Introduction
Several experimental and computational studies have demonstrated the effectiveness

of chaotic mixing in low Reynolds number flows. Much of these studies serve to clarify
the fundamentals of mixing processes. A thorough review of the key concepts in
chaotic mixing can be found in Ottino (1990). Numerous studies on two-dimensional
flows have been summarised by Chien, Rising & Ottino (1986), Ottino (1989) and
Jana, Metcalfe & Ottino (1994). Recently, some papers have appeared that report
on mixing experiments and simulations involving three-dimensional flows (see Kusch
& Ottino 1992; Miles, Nagarajan & Zumbrunnen 1995; Southerland, Frederiksen &
Dahm 1995; Cartwright Feingold & Pirol 1996; Avalosse & Crochet 1997; Hobbs
& Muzio 1997). In this study a method is introduced to analyse mixing in three-
dimensional flows and results are presented for three-dimensional cavity flows, which
are considered to act as prototypes for studying mixing processes.

It is well known that in steady two-dimensional cavity Stokes flows, the velocity
field is integrable and the flow is non-chaotic (Aref 1984). A tracer in the flow follows
closed streamlines, and, as a consequence, mixing is poor, since the tracer only travels
through a limited part of the flow domain and the stretching in the steady flow will
only be linear. If, however, the flow is made time-periodic, it is very likely that the
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system will possess chaotic trajectories. In this case a tracer is no longer trapped
by closed streamlines and is advected to a larger portion of the flow domain. The
stretching may become exponential, resulting in efficient mixing, e.g. Ottino (1989).

The main characteristics of chaotic mixing are determined by the location and
nature of the periodic points. By definition, periodic points are points which return
to their original position after one or more periods of flow. They are classified
according to the nature of the deformation in their neighbourhood. Elliptic (stable)
periodic points are at the centre of non-mixing regions, called islands, while hyperbolic
(unstable) periodic points are centres of stretching and folding in the flow. Around
hyperbolic points the fluid is compressed in one eigendirection and stretched in the
other eigendirection. In this paper, only first-order periodic points are investigated.
While considerable theoretical guidance exits for two-dimensional closed time-periodic
mixing flows, there is a lack of similar tools and results for complex three-dimensional
flows.

The primary objective of this study, is to extend methods and concepts available
for two-dimensional flows to analyse mixing in general three-dimensional cavity
flows. Because of computational restrictions associated with large three-dimensional
problems, our analysis for now is limited to the first period of a time-periodic flow.
The algorithm presented in this paper can however also be used to determine higher-
order periodic points, and it is not limited by special requirements with respect to
the geometry of the mixing flow or by the rheology of the fluid. It consists of the
following steps: first, an accurate representation of the velocity field is computed;
next, adaptive particle tracking is used to determine the deformation of well-defined
material volumes, and displacement data in the flow are used to locate points returning
after one period; finally, stretching data are used to determine the nature of the
periodic points. The term periodic structures is used to represent the set of periodic
points.

A first approach for determining periodic points in three-dimensional flows was to
extend an existing method for two-dimensional time-periodic lid-driven cavity flows
(Meleshko & Peters 1996) to three-dimensional cavity flows. This technique, however,
exploits some symmetry in the velocity field and therefore has limited application. If
the technique is applied to the three-dimensional cavity with closed top and bottom,
where the flow is induced by the time-periodic motion of the front and back walls,
some non-trivial results are obtained. The periodic points found form periodic lines
in the flow domain. It is also observed that the nature of the periodic points on
these lines can change if one travels along a periodic line. For the three-dimensional
flows considered in this paper, the periodic lines are closed or start and end on the
boundary of the flow domain.

For more general three-dimensional flows, considerations like symmetry do not
apply and, therefore, in this paper an additional algorithm is introduced that locates
regions with minimum displacement after one period of mixing in order to identify
periodic structures. To validate the technique, it is shown that its application to
quasi-two-dimensional two-step time-periodic three-dimensional flows yields the same
periodic structures as found earlier, using the method exploiting symmetry. A four-
step mixing protocol to obtain a fully three-dimensional flow is introduced, and elliptic
and hyperbolic periodic lines are determined. The differences in mixing performance
for blobs placed at different positions, around different type of periodic points in the
three-dimensional cavity, are already obvious by as few as four periods of flow.
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Figure 1. Search algorithm for a periodic line. The eigenvector n1 corresponding the eigenvalue 1
is tangential to the periodic line.

2. Periodic structures in three-dimensional mixing flows
In this section the algorithms to locate and classify periodic points in three-

dimensional mixing flows are presented. It is observed that for certain three-
dimensional flows these points can form open or closed lines, and since the structure
of the lines is not clear in advance, we denote the collection of periodic points as
a periodic structure. Two possibilities are distinguished: flows where a symmetry
condition can be used to reveal the periodic points and more general flows where
such a symmetry condition is absent or too complicated to be of use for the analysis
of periodic points. Results obtained with the first type of flow can be used to check
the more general method.

In general any flow can be represented by

x = Φt(X ), X = Φt=0(X ), (2.1)

mapping particle X to x after a time t, e.g. Ottino (1989), where X refers to the initial
position at t = 0.

Using this definition, a periodic point P of order n is defined as

Φn T (P ) = P , (2.2)

Φm T (P ) 6= P for m < n. (2.3)

T is the duration of one period of motion.

2.1. Determination of periodic structures using symmetry of the flow

For cavity flow with time-periodic motion of the front and back walls only in the
x-direction (defined as protocolA in § 4.2 and shown in figure 2), periodic points can
be found using a technique similar to that elaborated by Meleshko & Peters (1996).
This technique, originally designed for two-dimensional cavity flow, exploits symmetry
in the velocity field (streamlines are symmetrical with respect to the plane x = 0 (see
also Bajer 1995)) and is, with minor adaptations, also applicable to three-dimensional
cavity flow. The essential knowledge about periodic points is that they cross the plane
of symmetry, say x = 0, at the times t = T/4 and t = 3T/4 (where T is again
the time of one period). So, the surface that coincides with the plane x = 0 at the
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instant t = T/4 is tracked up to the time t = 3T/4. The intersection of this deformed
surface with the plane x = 0 gives a portrait of the periodic structures, namely their
positions after 3/4 periods of the motion. In general the intersection of the two
surfaces can consist of surfaces, lines and points. For the results presented here, the
intersections (and thus the periodic structures) consist of lines which are closed or
end at the boundary (since the deformed surface and the plane x = 0 have a common
boundary). The true position of the periodic lines is found by tracking the points to
the time t = T . The location of the points was also verified by tracking them for one
complete period of the flow. An example of this technique is presented in § 4.3.

2.2. Determination of periodic structures in general periodic flows

For more general three-dimensional mixing flows, considerations like symmetry in
the velocity field can be of no use. This implies that another technique for finding
periodic structures is needed. The technique developed here is based on an analysis
of displacement and stretching over one period. The displacement function is defined
as

d(X ) = ‖X −ΦT (X )‖2, (2.4)

where ‖ · · · ‖2 is the Euclidean norm.
Using the definition of the displacement gradient FX = (∇XΦT (X ))T , a useful

definition of the stretching coefficient can be formed:

s(X ) = max
λ∈σ(FX )

|λ|, (2.5)

where σ(FX ) is the eigenvalue spectrum of FX .
The technique used to locate periodic points is essentially based on finding roots

of d(X ) = 0. If a root is found, say point x0, then the eigenvalues λ1, λ2 and λ3 of
the displacement gradient matrix FX are investigated. Notice that for incompressible
fluids det (FX ) = 1 or, equivalently, λ1λ2λ3 = 1. If (and only if) the periodic point
x0 belongs to a periodic line, which is mapped to itself, one of the eigenvalues (say,
λ1) is necessarily equal to 1. If a periodic point is found with an eigenvalue 1 then
the eigenvectors are used to search for other periodic points. It is used that the
corresponding eigenvector n1 is tangential to the periodic line (see figure 1). This is
clear since

αn1 = F x0
· αn1 = αλ1n1 (α→ 0). (2.6)

For the other two eigenvalues there are two possibilities.
(a) First, both of them can be complex and then they are complex conjugate:

λ2 = λ∗3 and λ2λ3 = 1. Their absolute values are in this case both equal to 1 and the
type of the periodic point on the line is elliptic (locally the material rotates around
the periodic point).

(b) The other possibility is that both eigenvalues λ2 and λ3 are real. In the limiting
case (parabolic point) the absolute value of both of them can be equal to 1, otherwise
the absolute value of one of them is larger than 1, and as previously λ2λ3 = 1. This
corresponds to an unstable (hyperbolic) point on the line (locally the material is
stretched).

Note that the term ‘elliptic’ can be somewhat misleading for the three-dimensional
case: in the vicinity of a stable periodic point, a combination of rotation and,
perpendicular to that, shear can occur. In the two-dimensional case the combination
of shear and rotation around a stable periodic point is not possible.
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Figure 2. Geometry and definition of the cavity flow; arrow 1 depicts the movement of the front
wall, arrow 2 that of the back wall, all other walls are stationary.

3. Computational issues
Figure 2 shows the geometry investigated in this paper: a three-dimensional rect-

angular cavity −w < x < w, −d < y < d, 0 < z < h. The front and back walls
can be moved tangentially with velocities uF and uB respectively, the other walls are
stationary. The boundary conditions for the velocities g are

g =


uF = UF (t) ex +WF (t) ez at y = −d,
uB = UB(t) ex +WB(t) ez at y = d,

0 other walls .

(3.1)

The time-periodic wall motions are discontinuous and co-rotational in time, e.g.
the front and back walls move in opposite directions. Since highly viscous fluids are
assumed, the Reynolds numbers are small, and a Stokes approximation is used. The
velocity field u of the flow in the domain Ω is then described by the steady Stokes
equations, 

ν∇2u− ∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω,

(3.2)

where ν is the kinematic viscosity of the Newtonian fluid, p is the pressure and Ω is
the closure of Ω.

The solution of the stationary Stokes equations (3.2) is computed as an asymptotic
case of the unsteady equations. A continuous projection method is used to decouple
the velocity and pressure components (see Gresho 1990; Timmermans, Minev & Vosse
1996). The original problem is reformulated into four simpler problems: the solution
of a Helmholtz problem for each of the velocity components and a Poisson equation
for the pressure. The Helmholtz and Poisson problems are discretised in space using
the spectral element method, introduced by Patera (1984) and further developed by
Maday & Patera (1989). For a more detailed description of this numerical scheme see
Timmermans et al. (1996) and Minev et al. (1995).

In numerical collocation schemes the velocity is only known at a limited number
of grid points. Tracking material points in a flow requires knowledge of the velocity
of the fluid at any arbitrary point in the flow domain. Therefore, interpolation
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of the velocity field to a set of arbitrary points is necessary. The accuracy of the
interpolation is always limited to the accuracy of the discretised data. To ensure
that the interpolation error is of the same order as the approximation error (of the
discretised data) a consistent interpolation scheme is necessary: a scheme that uses
the same polynomial basis functions as are used within the numerical discretisation.
Souvaliotis, Jana & Ottino (1995) studied the influence of small disturbances in the
velocity field which give rise to completely different advection patterns for chaotic
mixing flows.

The strategies to locate periodic points described in §§ 2.1 and 2.2 require an
accurate tracking of material volumes. The tracking of these volumes involves the
numerical integration of the dynamical system

ẋ = u(x, y, z, t), (3.3)

which is computationally expensive if the velocity field is not analytically available.
A fourth-order adaptive Runge–Kutta scheme (see Press et al. 1992) is used to solve
equation (3.3) and to make sure that time integration errors can be neglected compared
to the spatial discretisation errors. To follow material volumes and surfaces in the
flow, some conventional methods (Carey & Chen 1995; Ottino, Souvaliotis & Metcalfe
1995) uniformly distribute a large number of points in the volume and track them
individually. For three-dimensional applications in particular this strategy requires
exceptional computational resources to obtain satisfactory precision. A possible way
out consists in tracking just the boundary of the selected volume. Nevertheless, as the
material volume is stretched and folded many times in case of periodic laminar mixing,
it is important to choose an appropriate strategy for the representation of the volume.
Although various techniques of adding new material points are available (based, for
example, on local smoothing of the curve using splines), the addition of auxiliary
material points onto the initial configuration is preferred, since this configuration is
supposed to be defined exactly. Analysis of distance and curvature between adjacent
material points is performed and when necessary additional points are inserted. With
this approach an accumulation of errors is avoided, and at all times an accurate
representation of the material volume is available.

The general strategy to find first-order periodic structures in three-dimensional
flows requires the computation of the displacement function d(X ) within the flow
domain. To locate the roots of d(X ) = 0 the following strategy is used:

(a) Analysis of marker displacement on a coarse three-dimensional grid over one
period, to find an initial guess for the local minimum of displacement. See figure 3(a).

(b) Accurate determination of the position of local minima of displacement, using a
sequence of planar two-dimensional grids with decreasing coarseness. See figure 3(b).

(c) Analysis of local deformation pattern, determining the eigenvalues and eigen-
vectors of F , determining if there is an unit eigenvalue. If so, then the eigenvector that
corresponds to unit eigenvalue is determined (this vector is tangential to the periodic
line) and used to step along the periodic line (see figure 1).

(d) Back to step (b) to proceed along the periodic line.
(e) Diagnose the type of periodic points. See § 2.2.
The strategy starts with a relatively coarse uniform three-dimensional rectangular

grid of material points in the flow domain. For computational reasons, the grids are
such that they do not touch the boundaries. The points of these grids are tracked over
one complete period of motion and the total displacement of each individual point
d(X ) is computed. The minima of this function indicate the location of (possible)
periodic points.
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Figure 3. (a) Greyscale plot representing the displacement d(X ) of a marker grid over one period;
(b) refined marker grid, used to locate the local minimum of displacement.

As the resolution of the grid is limited (by computational resources), there is no
confidence that the local minima indeed represent the periodic structures. Therefore,
these regions of low displacement are refined by recomputing d(X ) on a finer grid (see
figure 3) and again analysed until a minimum is found that is, within some specific
tolerance, close enough to zero.

In addition to the displacement analysis of the points in the uniform three-
dimensional rectangular grid, extra points are added around the original set of
points. The differences in displacement of the new set of points after one complete
period of motion are used to determine the stretching s(X ) in the original material
points. Finally, the eigenvector that corresponds to the unit eigenvalue is determined
and a search direction is determined to capture the route of the periodic line, see also
figure 1. It should be noted that if the initial grid is not fine enough, periodic points
may stay unnoticed. For the three-dimensional cavity flows analysed in this paper a
32× 32× 32 grid was found fine enough to locate an initial guess for the position for
the periodic points.

4. Results and discussion
First, the accuracy of the numerically obtained velocity field and the particle

tracking algorithm is addressed. The results for the general method for finding periodic
structures are compared with results using symmetry of the flow. The application of
our method for the determination of periodic structures in general three-dimensional
time-periodic flows is addressed in the last section. Here, a four-step mixing protocol
is introduced and the periodic structures found in this flow are analysed.

4.1. Accuracy of the velocity field and the particle tracking algorithm

To check the accuracy of the numerical techniques used to locate periodic points,
a well-known two-dimensional example of a periodic mixing flow in a rectangular
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(a) (b)

Figure 4. The results of tracking a blob after five periods using a numerical (a) and an analytical
(b) velocity field. The dimensionless displacement DD is equal to 6.24.

cavity is considered (later this flow is extended to the three-dimensional case). The
flow is generated by successive periodic motion of two opposite walls (upper and
lower in figure 4) in opposite directions. The two other walls are fixed. First, during
the first half-period the top wall moves to the right, then, during the second half-
period the bottom wall moves to the left. This mixing flow is chosen since for this
flow a semi-analytical solution is available (Meleshko & Peters 1996) so the accuracy
of the numerical scheme in computing the velocity velocity field can be validated. The
dimensionless displacement of each wall during a period is defined as

D =
dtop + dbot

w
, (4.1)

where dtop and dbot are the displacement of the top and bottom, respectively, while
w denotes the width of the cavity. For this case the dimensionless displacement was
set equal to D = 6.24, the same value as used by Ottino (1989) where dtop = dbot.
The aspect ratio of the cavity (length to width) was 5:3. A blob is placed around a
first-order hyperbolic point (1.15, 0) and is tracked for five periods using both the
numerical and the analytical solution. The numerical solution is obtained using a
spectral element mesh consisting of 32 elements of 8th order. The results, presented
in figure 4, show a nearly perfect agreement between both deformed blobs, justifying
the use of the numerical solution technique.

The number of material points needed to describe the blob is presented in table 1.
The table shows the exponential increase of the circumference of the blob (between
each period approximately a factor 3 1

2
). The number of points needed to describe the

blob increases approximately the same factor. During by tracking over five periods
the area is computed for the numerical and analytical situations. In both cases the
area preservation is exceptionally good, demonstrating the accuracy of the adaptive
particle tracking scheme used.

4.2. Protocol definition of three-dimensional periodic flows

Three different prototype mixing flows with increasing complexity have been analysed
for first-order periodic points. Figure 5 displays the protocols of wall motion used to
generate the mixing flows. The flow field is described by the Stokes equations (3.2)
and the boundary conditions (3.1).

The specific boundary conditions used are as follows (n is a positive integer denoting
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Figure 5. Protocols A,B and C (a–c). The sequence and the direction of the front and back wall
motion is shown. All other walls are fixed.

Time in periods T 0 1 2 3 4 5

Number of points
(analytical) 120 207 627 2728 9217 30739

Circumference of
blob 1 10.0650 31.9198 136.7518 442.1563 1489.7207

Area of blob 1 1.0042 0.9985 0.9957 1.0071 1.0041

Number of points
(numerical) 120 205 624 2687 9139 30367

Circumference of
blob 1 9.9461 31.6231 135.2885 438.6018 1473.1791

Area of blob 1 1.0041 0.9986 0.9902 1.0018 0.9830

Table 1. Comparison of the number of points, area and circumference between the numerical and
analytical results as presented in figure 4. The values for area and circumference are relative to the
initial configuration.

the period number and T is the total period time):

Protocol A
UF = 1, nT < t 6 (n+ 1

2
)T ;

UB = 1, (n+ 1
2
)T < t 6 (n+ 1)T ;

Protocol B
UF = 1, nT < t 6 (n+ 1

2
)T ;

WB = 1, (n+ 1
2
)T < t 6 (n+ 1)T ;

Protocol C
UF = 1, nT < t 6 (n+ 1

4
)T ;

WB = 1, (n+ 1
4
)T < t 6 (n+ 1

2
)T ;

UF = −1, (n+ 1
2
)T < t 6 (n+ 3

4
)T ;

WB = −1, (n+ 3
4
)T < t 6 (n+ 1)T .

Mixing protocol A is a straightforward extension of the two-dimensional protocol.
Protocols B and C have been introduced to increase the three-dimensional effects in
the mixing flows. For protocol A the dimensionless displacement D of the walls over
a half-period was equal to 7. For protocol B the range 3 6 D 6 5 was considered
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(a) (b)

Figure 6. (a) The initial planar surface which is tracked using mixing protocol A from a quarter
to three quarters of a period (b). For the initial surface a uniform grid is chosen which is adaptively
refined during the tracking procedure.

and for protocol C the cases D = 3 and D = 5 are examined. The box size for
protocol A was chosen such that results can be compared with two-dimensional
results (h = 1, w = 1.67, d = 1). For the other protocols a cube, −1 < x < 1, −1 <
y < 1, −1 < z < 1, is chosen so that only one velocity field is required.

4.3. Analysis of periodic structures in mixing flow A
The periodic lines for the rectangular cavity found by using symmetry conditions
serve as an useful example to check the general technique introduced in § 2.2. Figure 6
shows the deformation of the initial planar surface, which is tracked from a quarter
to three quarters of a period. The intersection of the two surfaces (which are lines
for this flow with dimensionless displacement equal to 7) is tracked to a full period
and provides the location of periodic points. The periodic structures, which are now
lines instead of points, are presented in figure 7. The thickness of the line is used to
designate its type: stable (elliptic) lines are plotted thick, unstable (hyperbolic) are
plotted thin. The symmetry, which is present for this flow, is also revealed by the
periodic points. The planes of symmetry are the mid-plane z = 0.5 and the plane
y = 0. Note that the periodic lines displayed in figure 7 do not end at the boundaries
of the flow domain. This is merely because of computational reasons: the initial
surface is not touching the boundaries.

The pattern shown in figure 7 can be related to the results for the two-dimensional
cavity flow with decreasing D, noticing that in the vicinity of the lid and bottom,
the effect of the wall displacement is reduced, and that the motion of the particles
is, approximately, restricted to one horizontal level. Close to the bottom only one
periodic line is formed, similar to one periodic point in two dimensions, for relatively
small values of D. Approaching the mid-plane, equivalent to increasing effective D, the
single elliptic line is split into two elliptic lines and one hyperbolic line. Closer to the
mid-plane (z = 0.5) the elliptic lines also change their type and become hyperbolic.
Another typical phenomenon, already known from the two-dimensional case, is the
birth of a pair of periodic points of different type ‘out of nothing’. This is observed
in the left half of the cavity (x < 0) where a closed ring is formed when the opposite
lid is approached and the lines merge and disappear again.

Analysis of periodic structures in flow A using a general technique

Mixing flow A is also analysed using the general technique introduced in § 2.2. The
easiest way to examine the three-dimensional structures is ‘slice by slice’ (step (b) in
the algorithm). In figure 8 the patterns of the displacement and the stretching ratio
are presented for a number of horizontal cross-sections. On the left side the total
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Figure 7. Periodic lines in the quasi-two-dimensional flow (mixing protocol A) : thin – unstable
(hyperbolic) lines; thick – stable (elliptic) lines, derived using the symmetry of the flow field.

displacement d(X ) over one period is presented. Light coloured regions represent
regions of low displacements, whereas the dark coloured regions are regions of high
displacements. On the right side of the figure, the stretching s(X ) over one period is
depicted. To increase the clarity of the map, thresholding of the maximum stretching
values was used (the threshold level was equal to 5). To determine the type of the
periodic points, contour lines for displacement are placed on the stretching figures.

Close to the bottom, at the level z = 0.05 (see figure 8), the local minimum of the
displacement in the zone of low stretching indicates that the elliptic line crosses this
plane. The horizontal slice z = 0.125 is, approximately, the level where a periodic
line is split into three (compare with figure 7). This phenomenon is indicated by
the shape of the zone of the local minimum of displacement. The ‘tongue’ of the
high-stretching region (green colour in figure 8), approaching the central zone of
the displacement minimum, indicates that, after the splitting, the line in the middle
becomes hyperbolic. On the upper level, z = 0.225, three separate lines, crossing the
plane, are clearly visible: one of them in the middle, located at the y = 0 axis being of
the hyperbolic type, while the two other lines remain of the elliptic type. In the mid-
plane, z = 0.5, all three sharp local minima of displacement are positioned in zones of
high stretching ratio, indicating that the points are of hyperbolic type. In the left part
of the cross-section, a clear portrait of another elliptic periodic line is present. This
line is part of the closed curve in the left of the cavity, plotted in figure 7. The coupled
hyperbolic part of the line is outside the zone in which the analysis was performed.
It can be concluded that the results of this ‘displacement-stretching’ analysis are in
excellent agreement with the results of the search for periodic structures using the
‘symmetry’ algorithm.
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(a) (b)Displacement d(X ) Stretching s(X )

z = 0.050

z = 0.125

z = 0.225

z = 0.500

0 1 2 3 1 1.5 2.5 3.5 4.52 3 4 5

Figure 8. Maps of displacement and stretching over one period of motion (using mixing
protocol A) at the horizontal levels z = 0.05, 0.125, 0.225 and 0.5, respectively, with ranges
[−0.9w < x < 0.9w, −0.9d < y < 0.9d]. (a) Maps of displacement: colours denote displacement;
white colour corresponds to low displacement. Red contour line denotes the area of minimum
displacement. (b) Maps of the stretching: colours denote the stretching ratio, green corresponds to
high stretching, yellow the low stretching.
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Point ∆x = 10−1 ∆x = 5× 10−2 ∆x = 2.5× 10−2 ∆x = 1.25× 10−2 ∆x = 6.25× 10−3

p1 0.99567 0.99846 0.9995 0.9997 0.9998

p2 0.99873 0.99569 1.0004 1.0002 1.0000

p3 1.00291 1.00037 1.0001 1.0000 1.0000

Table 2. The computed unit eigenvalues of the displacement gradient matrix for the points p1, p2

and p3; The point p2 is an elliptic periodic point, the other two are of hyperbolic type. The
eigenvalues are computed using a second-order central differences scheme with spatial discretisation
step size ∆x.

Table 2 contains the unit eigenvalues determined for the points p1 = (0.829,−0.548,
0.509), p2 = (0.717,−0.336, 0.207) and p3 = (1.051,−1.657, 0.510). The point p2 is an
elliptic periodic point, the other two are of hyperbolic type. The results show that the
eigenvalues are accurately computed. The periodic points are therefore located on a
periodic line.

4.4. Analysis of periodic structures in mixing flow B
The protocol of mixing flow B is another extension of the two-dimensional cavity
flow to a three-dimensional cavity flow by moving one wall perpendicular to the
other. For this protocol no first-order periodic points, and therefore also no related
periodic structures, were found. Higher-order periodic points were not investigated.

Figure 9 shows, for a number of slices of the flow domain, the displacement of the
initial grid after one period and with D = 3. The minimum displacement is always
significantly larger than the grid cell size which is used to evaluate the displacement.
This analysis was done for a range of values for the displacement parameter D = 3–5,
but no (first-order) periodic points were detected. The absence of first-order periodic
points for this mixing protocol can also be explained by using a more qualitative
argument. If a periodic point exists, then the closed trajectory of this point consists of
two parts, each stemming from the streamlines of the two half-periods (see figure 10).
These streamlines are nearly planar during each half-period (z = const for the first
half-period and x = const for the second one), and their pattern looks the same as for
a two-dimensional cavity. It is typical for such a pattern that streamlines are closer to
the driving wall than to opposite wall. This means that crossing streamlines from the
two half-periods, belonging to streamline patterns created by opposite driving walls,
cannot cross in any other part of the flow domain, and therefore they cannot form
the closed trajectory which is needed for periodic points.

Detecting the absence of first-order periodic points in a mixing flow is an important
result as it gives an early, strong indication of poor mixing properties.

4.5. Analysis of periodic structures in mixing flow C
For this four-step protocol, the flow was induced by the successive motion of the
two opposite walls in opposite directions as depicted in figure 5. The net resulting
displacement of each wall, after one complete period, is zero. Different from the
previous protocols is that now slices in three directions were used for the analysis,
because the configuration of the lines was completely unknown, and there was no
information about their possible position. Again, first coarse grids were used to locate
an initial guess for the position of the periodic points. A sequence of finer, locally
refined grids provided a more accurate location. For these points, where d(X ) < ε, the
eigenvalues and eigenvectors of F X are determined. The eigenvector that corresponds
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y = – 0.8 y = – 0.6 y = – 0.4

y = – 0.2 y = 0 y = 0.2

y = 0.4 y = 0.6 y = 0.8

Figure 9. Maps of displacement over one period of the two-step motion (D = 3) using mixing proto-
col B at the levels y = −0.8,−0.6, · · · , 0.8 respectively with ranges [−0.9 < x < 0.9, −0.9 < y < 0.9].
Colours denote displacement; lighter colours correspond to low displacement.

to the unit eigenvalue is determined and a search direction is determined to capture
the periodic line (figure 1). As a result, a system of periodic lines was revealed for
D = 3 and D = 5.

The periodic lines found are plotted in figures 11(a) and 11(b). Hyperbolic parts of
the lines are plotted thin, elliptic lines are displayed thick. For both D-values three
periodic lines are formed. In the first case, D = 3, two completely elliptic lines are
revealed and one periodic line consisting of one elliptic part and two hyperbolic tips.
In the case D = 5 the periodic structure consists of three lines with mixed types
of periodic points. The existence of first-order hyperbolic points for both D-values
shows that mixing protocol C can lead to chaotic advection.

To emphasize the importance of the periodic structure analysis, the motion of two
blobs is calculated for a small number of periods. One blob is positioned around
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Figure 10. Two streamlines of mixing flow B, one belonging to the movement of the front wall and
the other to the back wall: it is clear that it is not possible for a particle to travel over streamlines
and return to its original position.
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Figure 11. Periodic lines in the four-step mixing flow (protocol C) : thin – unstable (hyperbolic)
lines; thick – stable (elliptic) lines. (a) D = 3, (b) D = 5.
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Figure 12. Deformation of two blobs after four periods: initial blob-around a hyperbolic point,
and blob E around an elliptic point.
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Figure 13. Increase in interfacial area and volume conservation of elliptic (E) and hyperbolic (H)
blob for four-step cavity flow (mixing protocol C).

an elliptic point, the other one around a hyperbolic point. The results for the case
DD = 3 are presented in figure 12. The difference in deformation of the blobs is large
and the blob around the hyperbolic point is advected through the whole domain,
while the stretching of the blob around the elliptic point is only minor. In figure 13
results regarding the volume conservation are depicted. For the material blobs around
the hyperbolic and elliptic points, it is shown that the volume is preserved within a
few percent after four periods of mixing. The area is scaled with respect to the area
of the initial blob. For the blob around the elliptic part of the line, the area remains
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nearly constant; however for the hyperbolic blob a substantial increase in area is
observed. As a final test a material point (0.188562, −0.399432, −0.408048) located
at an elliptic line is tracked for 500 periods. The distance between the tracked and
original points is 0.0062 indicating the accurate location of the elliptic point.

5. Conclusions
A method is presented to determine periodic structures in three-dimensional mixing

cavity flows. This method is also applicable to more general flows and geometries.
The analysis of the motion during one period provides information on deformation
and stretching in the flow. Careful investigation of these data results in the location
of periodic points (if any) in the flow domain. Analysis of the displacement gradient
matrix is used to identify the type of the periodic points. A major result is that
periodic lines are observed for these three-dimensional cavity flows. The structure of
the lines can be rather complex in geometry and their nature can change along the
line from elliptic to hyperbolic.

The results show that the approach to locate and identify periodic structures has
successfully been applied to several three-dimensional cavity flows. Two different two-
step mixing protocols, as well as a four-step protocol in cavity flows were analysed.
The periodic structures in the first two-step mixing flow, with parallel moving walls,
are found using two techniques: one exploits symmetry in the flow and is used
to validate the other technique using a more general approach. Convergence of
the latter has been demonstrated numerically by evaluation of the eigenvalues of
the displacement gradient matrix. Both methods lead to the same set of periodic
structures. For the second two-step mixing protocol, where one wall moves in a
direction perpendicular to the other wall, no first-order periodic points were found.
Thus, the method developed not only locates periodic points, but also provides the
important information that periodic structures are absent, i.e. the mixing protocol
used appears to be less appropriate compared to other protocols with first-order
hyperbolic periodic points. For the third four-step protocol periodic structures were
found for two different mixing parameters. The tracking of two blobs located around
periodic points of hyperbolic and elliptic type, respectively, shows the large difference
in stretching in the four-step induced periodic flow. Also, the high accuracy of the
method is revealed by the (nearly) constant location of the blob around an elliptic
point.

The authors would like to acknowledge support by the Dutch Foundation of
Technology (STW), grant no. EWT44.3453.
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